Running Docker images using Shifter

- Running a Docker image with Shifter - Step by step
- Interactive Shell (Bash)
- Using GPUs
- Related articles

When you want to run Docker containers on the Fidis/Gacrux cluster

Warning
We are still in beta phase. The installation will soon be improved with:

- automatic account creation on the registry

The present documentation will be updated once the registry has been modified.

Running a Docker image with Shifter - Step by step

Prerequisite
You need to have Docker installed on your machine

1. Get a docker image from dockerhub for instance

 $ docker pull alpine:latest
 $ docker images

2. Account on the c4science registry

 - Request an account
 - Change your password on https://registry.c4science.ch

3. Set up your machine

 - Login on the registry from your local Docker installation

 $ docker login registry.c4science.ch
 Username (username): username
 Password:
 Login Succeeded

4. Upload a Docker image to the registry

 - On the web interface, create a Project on the registry (private or public)
 - Tag the image you want to upload on your local machine and push it to the registry

 $ docker tag alpine:latest registry.c4science.ch/yourproject/alpine:latest
 $ docker push registry.c4science.ch/yourproject/alpine:lates

5. Pull an image on Shifter and specify a user or group ACL

 - From a cluster frontend (i.e.: fidis.epfl.ch), login to the registry, pull the image and check it's was pulled OK

 $ shifterimg login
 default username: <username>
 default password:
 $ shifterimg pull yourproject/alpine:latest
 $ shifterimg images
 tcm docker READY 9797e5e798 2018-03-15T16:00:59 yourproject/alpine:latest

 - You can specify one or multiple (separated by a comma) LDAP username and/or group so the image is only available to those people

Warning
We are still in beta phase. The installation will soon be improved with:

- automatic account creation on the registry

The present documentation will be updated once the registry has been modified.
To update the user/group ACL you can re-run the pull command
To view the full info about the images (warning: JSON):

```bash
$ shifterimg -v images
Message: {
  "list": [
    {
      "ENTRY": null,
      "ENV": [
        "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
      ],
      "WORKDIR": "MISSING",
      "groupACL": [],
      "id": "9797e5e798a034d53525968de25bd25c913e7bb17c6d068ebc778cb33e3ff6e5",
      "itype": "docker",
      "last_pull": 1536842228.15727,
      "status": "READY",
      "status_message": "",
      "system": "fdata2-int.fidis",
      "tag": [
        "scitas/alpine:latest"
      ],
      "userACL": []
    }
  ],
  ...
}
```

6. Run the image

You can submit the following Slurm script with the `sbatch` command

```bash
#!/bin/bash -l
#SBATCH --nodes 1
#SBATCH --ntasks 1
#SBATCH --cpus-per-task 1
#SBATCH --mem 1024
srun shifter --image yourproject/alpine ls /etc
```

Interactive Shell (Bash)

To have an interactive shell within your image, simply use this:

```bash
$ srun --pty shifter --image yourproject/alpine bash
```

Using GPUs

On Deneb shifter runtime is installed on the GPU nodes. You need prior access to the GPUs nodes, see FAQ
[aubort@deneb1 ~]$ srun --gres gpu:1 --partition gpu --qos gpu shifter --image library/debian:stable-slim
nvidia-smi -L
GPU 0: Tesla K40m (UUID: GPU-21730043-7144-85e7-d251-7834adb2d1ee)

[aubort@deneb1 ~]$ srun --gres gpu:1 --partition gpu --qos gpu shifter --image library/nvidia-cuda:9.1-runtime /home/aubort/gpu/cuda-samples/bin/x86_64/linux/release/simpleCUFFT
[simpleCUFFT] is starting...
GPU Device 0: "Tesla K40m" with compute capability 3.5

Temporary buffer size 448 bytes
Transforming signal cufftExecC2C
Launching ComplexPointwiseMulAndScale<<< >>>
Transforming signal back cufftExecC2C

FEEDBACK is welcome as this feature is experimental.

Related articles
- Running Docker images using Shifter
- FAQ
- Using the clusters
- How to use Tensorflow on the GPU nodes
- Running R on SCITAS machines